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Abstract 

The symptoms most commonly reported by patients affected by coronavirus disease 2019 

(COVID-19) include cough, fever, and shortness of breath. However, other major events usually 

observed in COVID-19 patients (e.g. high blood pressure, thrombosis, pulmonary embolism) seem 

to suggest that the virus is targeting the endothelium, one of the largest organs in the human body. 

Herein, we report both clinical and preclinical evidence supporting the hypothesis that the 

endothelium is a key target organ of COVID-19. 
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Introduction 

Coronavirus disease 2019 (COVID-19) represents a public health crisis of global proportions. 

Caused by SARS-CoV-2, which stands for severe acute respiratory syndrome coronavirus 2, 

COVID-19 was first announced in December 2019 in Wuhan, the capital of China's Hubei province, 

and has since spread globally1. The symptoms most commonly reported include cough, fever, and 

shortness of breath. The pathophysiology of the disease explains why respiratory symptoms are so 

common: indeed, the virus accesses host cells via the protein angiotensin-converting enzyme 2 

(ACE2)2, 3, which is very abundant in the lungs4. Nevertheless, ACE2 is also expressed by 

endothelial cells (ECs)5, 6, and other major clinical events usually observed in COVID-19 patients 

(e.g. high blood pressure7, thrombosis8, pulmonary embolism9) seem to suggest that the virus is 

targeting the endothelium, one of the largest organs in the human body10.  

 

Pathogenesis of COVID-19 

SARS-CoV-2 uses a surface glycoprotein (peplomer) called spike to access host cells and ACE2 

has been shown to be a co-receptor for coronavirus entry11, 12. Therefore, the density of ACE2 in 

each tissue may correlate with the severity of the disease in that tissue13-16. Other receptors on the 

surface of human cells have been suggested to mediate the entry of SARS-CoV-23, including 

transmembrane serine protease 2 (TMPRSS2)17, sialic acid receptors18, 19, and extracellular matrix 

metalloproteinase inducer (CD147, also known as basigin)20.  

Intriguingly, all of these 4 receptors are known to be expressed by ECs21-24 (Figure 1). ACE2 

remains the most studied of these receptors16, 25-29: for instance, its genetic inactivation has been 

shown to cause severe lung injury in H5N1-challenged mice30, whereas administration of 

recombinant human ACE2 ameliorates H5N1 virus-induced lung injury in mice30. Importantly, 

ACE2 is currently at the center of a heated debate among cardiologists31-34, and there are 

concerns that medical management of hypertension, including the use of inhibitors of the renin-

angiotensin-aldosterone system (RAAS), may contribute to the adverse health outcomes 

observed16, 35, 36; TMPRSS2 has been shown to bind the viral spike glycoprotein17; recent structural 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints202004.0204.v1

https://doi.org/10.20944/preprints202004.0204.v1


 4 

assays have suggested that coronaviruses can bind sialic acid receptors18; CD147 has been 

shown to be essential for the entry of cytomegalovirus into ECs24. 

 

Endothelial dysfunction refers to a systemic condition in which the endothelium loses its 

physiological properties, including the tendency to promote vasodilation, fibrinolysis, and anti-

aggregation; moreover, endothelial dysfunction appears to be a consistent finding in patients with 

diabetes37. Here we will discuss clinical and preclinical findings supporting our hypothesis that 

COVID-19 impairs endothelial function (Figure 2). 

 

Hypertension and COVID-19 

Several investigators have called attention to the potential over-representation of hypertension 

among patients with COVID-1938, 39. Moreover, hypertension appears to track closely with 

advancing age, which is emerging as one of the strongest predictors of COVID-19–related death8, 

40. Specifically, observational trials and retrospectives studies conducted near Wuhan area have 

actually shown that hypertension is the most common co-morbidity observed in patients affected 

by COVID-19, ranging from 15 % to 31.2%8, 41-44. The largest study has been conducted by Guan 

and colleagues between December 11, 2019, and January 29, 2020, providing data on 1099 

hospitalized patients and outpatients with laboratory-confirmed COVID-19 infection41; in this cohort, 

165 of them (~15%) had high blood pressure41. The authors also evaluated the severity of disease, 

and the composite outcome of intensive care unit (ICU) admission, mechanical ventilation and 

death, concluding that 23.7% of hypertensive patients had disease severity (vs 13.4% of 

normotensive subjects), and that 35.8% (vs 13.7%) reached the composite endpoint of ICU 

admission, mechanical ventilation and death41. The high rate of hypertensive patients in COVID-19 

was later confirmed in a prospective analysis on 41 patients admitted to hospital in Wuhan42 as 

well as in a large study conducted on 138 hospitalized patients with confirmed COVID-19 

infection43. Notably, in the latter report, the rate of hypertension was 31.2%, and 58.3% of 

hypertensive patients with COVID-19 infection were admitted to ICU compared to 21.6% of 

individuals with normal blood pressure43; evidencing the hypertensive state as a common co-
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morbidity and cause of ICU admission in COVID-19 patients43. Similarly, among 191 COVID-19 

patients from Jinyintan Hospital and Wuhan Pulmonary Hospital, 58 (30%) of them had 

hypertension, and 26 of them (48%) did not survive COVID-19, whereas 32 (23%) were survivors8. 

Finally, the 30% rate of hypertensive patients was further confirmed in an analysis based on the 

severity of COVID-19 conducted on 140 patients in Wuhan: 58 patients were classified as severe 

vs 82 patients classified as no severe: hypertensive patients represented 37.9% of severe vs 

24.4% of no severe COVID-19 patients44. Overall, these findings confirm a dual aspect of 

hypertension during COVID-19 pandemic: first, hypertension is the most common co-morbidity 

observed in COVID-19 patients; second, hypertension is evidenced in patients with worse 

prognosis and higher rate of death.  

These studies also raise numerous questions regarding the association between hypertension and 

COVID-19. Indeed, it is well known that hypertension is one of most common disease and co-

morbidity worldwide, considered a silent killer for worldwide population45. We speculate that the 

higher rate of hypertension and the worse prognosis in patients with COVID-19 infection could be 

seen as the spy of a cause-effect mechanism more than of a casual pre-existing association 

between these two different diseases.  

Recent reports evidenced higher morbidity and mortality rates of COVID-19 in African-Americans 

compared to Caucasian subjects in United States46. Of note, several studies have shown a higher 

prevalence of hypertension in blacks than in whites47, and ACE inhibitors (ACEi) and angiotensin II 

receptor blockers (ARS) have not been shown to be as effective in black populations compared 

with white populations48. 

 

ACE2 and anti-hypertensive drugs: what do we know? 

ACEi and ARS represent very effective strategies for the treatment of hypertension45. These drugs 

reduce the effects of renin-angiotensin axis by inhibiting ACE (ACEi) or by blocking the angiotensin 

receptors (ARS). A rising question for the scientific community and physicians is to understand 

whether ACEi/ARS could affect the prognosis of hypertensive COVID-19 patients16, 49, 50. 
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Unfortunately, there are no data regarding specific anti-hypertensive medications and hypertensive 

COVID-19 patients with infection.  

The role of ACEi/ARS in the control of ACE2 molecular pathways is controversial: indeed, 

preclinical studies evidenced that the selective blockade of either angiotensin II synthesis or 

activity in rats induces increases in ACE2 gene expression and activity51-54; similarly, treating 

infarcted rats with ARBs increased plasma concentration of angiotensin 1–7 and ACE255. In mice, 

ARB treatment augmented ACE2 mRNA and protein levels56, 57 and prevented the decrease in 

ACE2 protein levels induced by Angiotensin II58. Equally important, mineralocorticoid receptor 

blockers prevented aldosterone induced reduction in cardiac ACE2 mRNA expression in rat 

cardiomyocytes59 and increased ACE2 expression and activity in murine hearts and in monocyte-

derived macrophages obtained from 10 patients with heart failure60. 

Nevertheless, there is no clinical evidence that ACEi directly affect molecular pathways linked to 

ACE2 activity. For instance, urinary ACE2 levels were reported to be higher in patients treated with 

olmesartan vs untreated controls, but this finding was not observed in patients treated with other 

ARS or enalapril61; instead, another study reported no difference in ACE2 activity in patients who 

were taking ACEi or ARS vs untreated patients49. Of note, clinically prescribed ACEIs have been 

shown to not inhibit ACE2, which function as a carboxypeptidase62. In particular, ACE2 acts to 

counterbalance the effect of ACE63: indeed, whereas ACE generates angiotensin II from 

angiotensin I, ACE2 converts angiotensin II into an active heptapeptide (angiotensin 1-7) with 

vasodilative, anti-oxidant, and anti-inflammatory properties64-66. 

Some media sources have recently called for the discontinuation of ACE inhibitors and 

angiotensin-receptor blockers (ARBs), both prophylactically and in the context of suspected 

COVID-1967. Given the common use of ACE inhibitors and ARBs worldwide, guidance based on 

experimental evidence on the use of these drugs in patients with COVID-19 is urgently needed. 

Notably, there is no evidence regarding the effects of ACEi/ARS on circulating ACE2 expression 

and/or lung-specific expression of ACE2 during COVID-19 infection. Therefore, we can only 

speculate that human ACE2 expression can vary, and it could be altered by hypertension and/or by 

other pathological conditions as during COVID-19 infection. On the other hand, even assuming that 
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ACEi/ARS could modify ACE2 levels and/or activity in humans, current studies cannot indicate if 

these effects could favor an enhanced engagement and/or entry of COVID-19 in humans.  

 

The binding of the SARS-CoV-2 spike protein to ACE2 has been suggested to cause the down-

regulation of ACE2 from the cell membrane68. Consequently, ACE2 down-regulation could lead to 

a loss of protective effects exerted by ACEi/ARS in humans69. Such down-regulation of ACE2 is an 

attractive research field54, 70. Indeed, it could be a valid therapeutic target to ameliorate response 

and clinical prognosis in hypertensive patients affected by COVID-19. Moreover, some 

investigators proposed the restoration of ACE2 by administration of recombinant ACE2 to reverse 

the lung-injury process during viral infections2. Actually, these effects are being investigated in 

ongoing clinical trials (ClinicalTrials.gov NCT04287686), alongside the use of losartan as first 

therapy for COVID-19 in hospitalized (NCT04312009) or not hospitalized patients (NCT04311177). 

A major role in the pathogenesis of (as well as in the clinical response to) COVID-19 could be also 

played by ACE2 polymorphisms, which are relatively under-investigated if compared to ACE71, 72.  

 

Finally, we have to consider the higher rate of cardiac injury and adverse outcomes in hypertensive 

patients during COVID-19 pandemic48, 73, 74. Therefore, ACEi/ARS chronic therapy should not be 

discontinued in hypertensive patients with COVID-19. Indeed, the loss of their pneumo- and cardio- 

protective effects could be detrimental45. In addition, in absence of adequate follow-up visits, 

switching from ACEi/ARS to another anti-hypertensive therapy could cause a suboptimal control of 

blood pressure. Thus, as suggested by several medical associations67, in absence of definitive 

clinical studies and without clear evidence, hypertensive patients should avoid discontinuation 

and/or therapeutic switching during COVID-19 infection.  

 

Diabetes and COVID-19 

Diabetes mellitus is a frequent co-morbidity and a cause of worse prognosis in patients with 

COVID-19 infection75-77. Indeed, evaluating pneumonia cases of unknown causes reported in 

Wuhan and in patients with history of exposure to Huanan seafood market before Jan 1, 2020, 
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20% had diabetes42. Similarly, among 1099 COVID-19 patients analyzed by Guan and colleagues, 

7.4% had diabetes: this percentage goes up to 16.2% among patients with severe disease (vs 

5.7% in patients with non-severe disease)41; furthermore, 35.8% of patients experiencing the 

composite endpoint of ICU admission, mechanical ventilation and death, had diabetes (vs 13.7% of 

patients that did not experience such endpoint)41. In summary, diabetes is a frequent co-morbidity, 

a risk factor, and an independent prognostic factor in COVID-19 patients. A strong evidence of the 

negative effects of diabetes in COVID-19 patients is confirmed by two meta-analyses78, 79.  

The worse prognosis in patients with diabetes and COVID-19 could be attributable to the fact that 

the pneumonia evolves towards clinical stages more refractory to medical therapies, oxygen 

administration and mechanical ventilation, with necessity of ICU care. These data have been 

investigated in a previous study conducted in patients with SARS80, in which the relationship 

between a known history of diabetes and fasting plasma glucose (FPG) levels with death and 

morbidity rate was assessed, showing that the percentage of patients with diabetes was 

significantly higher in deceased vs survivors (21.5% vs 3.9%, P < 0.01)80. Moreover, diabetics with 

hypoxemia (SaO2 < 93%) had higher FPG levels and FPG was independently associated with an 

increased hazard ratio of mortality (1.1, 95% CI: 1.0-1.1) and hypoxia (1.1, 95% CI: 1.0-1.1) after 

controlling for age and gender80. The authors concluded that diabetes (3.0, 95% CI: 1.4-6.3) and 

FPG > or = 7.0 mmol/l (3.3, 95% CI: 1.4-7.7) were independent predictors of death80.  

 

In COVID-19 patients, the incidence of diabetes is two-folds higher in ICU/severe vs non-

ICU/severe cases79. Indeed, the diagnosis of diabetes in a cohort of patients with COVID-19 

Infection evidenced a sub-group of patients with a 2.26-fold higher risk to experience adverse 

disease outcome analyses78. Unfortunately, no data are available on anti-diabetic medications and 

glucose homeostasis in COVID-19 patients. This aspect is really limiting, because the diagnosis of 

diabetes diagnosis and the altered glucose homeostasis during a condition of severe pneumonia 

with SARS are reported as main factors of worse prognosis and deaths80. Therefore, the 

investigation of anti-diabetic medications and glucose homeostasis could be harnessed to evaluate 

patients with higher risk to experience worse prognosis and death by COVID-19. We speculate that 
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the amelioration of glucose homeostasis in diabetic COVID-19 patients by specific hypoglycemic 

drugs could result in the amelioration of clinical outcomes with death reduction. However, these 

data are not reported in trials on COVID-19, and they need to be investigated in further studies. 

 

Thrombosis and COVID-19 

Patients with COVID19 often show clotting disorders, with organ dysfunction and coagulopathy, 

resulting in higher mortality81. Important data came from the analysis of coagulation tests including 

prothrombin time (PT), activated partial thromboplastin time (APTT), antithrombin activity (AT), 

fibrinogen, fibrin degradation product (FDP), and D‐dimer, in samples collected on admission and 

during the hospital stay of COVID-19 patients82. Non‐survivors patients had significantly higher D‐

dimer and FDP levels, and longer PT vs survivors on admission82. Moreover, significant reduction 

and lowering of fibrinogen and AT levels were observed in non‐survivors during late stages of 

hospitalization, which is compatible with a clinical diagnosis of disseminated intravascular 

coagulation (DIC)82. Hence, COVID-19 patients develop DIC, especially during the late stages83. 

Specifically, among 191 COVID-19 patients seen at two hospitals in Wuhan, D-dimer levels over 1 

μg/L at admission predicted an 18-fold increase in odds of dying before discharge8. Of note, when 

DIC is caused by a systemic infection, it features an acute systemic over-inflammatory response, 

strictly linked to endothelial dysfunction84.  

A dysregulated immune response, as seen in COVID-19, especially in the late stages of the 

disease, is known to play a decisive role in endothelial dysfunction and thrombosis85, 86, and 

microvascular permeability is crucial in viral infections87. Indeed, pulmonary endothelium represent 

a fundamental barrier between the blood and interstitium and has vital regulatory functions; 

specifically, ECs represent 1/3 of the cell population of the lung88, and pulmonary endothelial 

damage is considered the hallmark of acute respiratory distress syndrome (ARDS)89. Animal 

models of coronavirus-induced severe ARDS have shown that reduced ACE2 activity and loss of 

ACE2 in the lungs is mirrored by enhanced vascular permeability, and exacerbated pulmonary 

edema66. Acute pulmonary embolism (APE), reported in COVID-19 patients90, 91, has been shown 

to be a cause of clinical deterioration in viral pneumonias92, 93. Intriguingly, endothelial dysfunction 
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is known to be a key determinant in hypertension, thrombosis, and DIC94-98. A retrospective 

analysis evaluated 25 patients with COVID-19 pneumonia, who had a median of D-dimer of 6.06 

g/ml and underwent computed tomography pulmonary angiography (CTPA) to detect APE9. From 

this analysis, 10 patients had APE confirmed by CTPA. APE was mainly found in small branches of 

the pulmonary artery, and in 3 patients there was partial or complete thrombus absorption after 

anticoagulant therapy9. Henceforth, it is important to select COVID-19 patients at higher risk of 

APE, and practice CTPA for APE diagnosis especially in case of significant increase of D-dimer 

values. Anticoagulation could be a necessary therapy to control and reduce pro-thrombotic events, 

as well as to prevent APE99. 

 

Anticoagulation as a therapy for COVID-19. 

As discussed before, COVID-19 infection could cause endothelial dysfunction and a hyper-

coagulation state. This condition is aggravated by hypoxia, which augments thrombosis by both 

increasing blood viscosity and hypoxia-inducible transcription factor-dependent signaling 

pathway100. Consequently, these phenomena could result in APE with occlusion and micro-

thrombosis in pulmonary small vessels, as observed in critical COVID-19 patients101. Apart from 

cases of APE, COVID-19 can cause a sepsis-associated DIC, that is defined “sepsis-induced 

coagulopathy” (SIC)84. Thus, there is an increasing interest for the anticoagulant therapy for 

COVID-19. In a retrospective analysis conducted at Tongji Hospital of Huazhong University of 

Science and Technology in Wuhan, the authors examined 449 patients affected by severe COVID-

1999. The diagnosis of severe COVID-19 disease was made by evidence of respiratory rate≥30 

breaths/min, arterial oxygen saturation ≤93% at rest and PaO2/FiO2 ≤300 mmHg99. In these 

patients, they reviewed and compared the parameters of coagulation tests and clinical 

characteristics between survivors and non-survivors to evaluate the effects of heparin therapy99: 94 

patients received low molecular weight heparin (LMWH, 40-60 mg enoxaparin/day) and 5 received 

unfractioned heparin (UFH, 10000-15000 U/day), without other anticoagulants99. Heparin therapy 

significantly reduced mortality in patients with SIC score ≥4 (40.0% vs 64.2%, p<0.05), but not in 

those with SIC score <4 (29.0% vs 22.6%, p>0.05)99. D-dimer, PT, and age were positively, while 
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platelet count was negatively correlated with 28-day mortality99. In addition, stratifying by D-dimer 

values the study population, the authors reported in heparin nonusers a rise of mortality linked to 

the rising D-dimer, and 20% reduction of mortality for patients under heparin with D-dimer 

exceeding 3.0 g/mL99. Therefore, heparin treatment appears to be associated with better 

prognosis in severe COVID-19 patients with coagulopathy. The full clinical evaluation of patients 

with COVID-19 infection cannot leave aside from the analysis of laboratory and imaging data. We 

believe that PT/PTT, fibrinogen, and D-Dimer should be monitored daily and anticoagulation 

therapy should be recommended for COVID-19 patients when the D-Dimer value is 4 times higher 

than the normal upper limit, except for patients with anticoagulant contraindications. The confirmed 

diagnosis of severe COVID-19 disease in patients with hypercoagulation and organ failure could 

evidence an early stage of sepsis-induced DIC. On the other hand, anticoagulant may not benefit 

unselected patients. Consequently, further prospective studies are needed to confirm this result in 

COVID-19 patients, also testing other antiaggregants and anticoagulants (at different doses), 

including novel direct oral anticoagulants (NOAC or DOAC). 

 

Other therapeutic approaches 

Recently, chloroquine and hydroxychloroquine have been suggested as a potential therapy for 

COVID-19102, 103, although the exact molecular mechanisms remain unknown; if our hypothesis on 

the key role of ECs in COVID-19 disease is confirmed, these drugs may exert their beneficial 

effects via an amelioration of endothelial dysfunction. Indeed, consistent with our view, both these 

antimalaric agents have been shown to improve endothelial function104, 105 and to alter the 

glycosylation profiles of ACE2 by increasing the pH of intracellular organelles, including lysosomes 

and Golgi106. Strikingly, similar findings have been reported for colchicine107, azithromycin108, and 

tocilizumab109, recently proposed as treatment for COVID-19102, 110.  
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Figure 1. 

Pathogenesis of COVID-19. 

The SARS-CoV-2 coronavirus accesses host cells via the binding of its spike glycoprotein to 

angiotensin-converting enzyme 2 (ACE2), sialic acid receptor, transmembrane serine protease 2 

(TMPRSS2), and extracellular matrix metalloproteinase inducer (CD147). 
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Figure 2. 

Endothelial dysfunction is a major determinant of COVID-19. 

Endothelial dysfunction is a common feature of hypertension, diabetes, and thrombosis, critical 

clinical findings in COVID-19 patients. 
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